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Abstract 

With analogy to optical-image reconstruction theory, the 
role of 'in-between' structure factors (i.e. those having 
half-integral Miller indices) has been investigated in the 
context of the crystallographic phase problem. It is 
shown that in-between structure factors can be 
incorporated into the phasing process by means of the 
autocorrelation function (the Patterson for a single unit 
cell). Three-dimensional discrete Hilbert transforms 
(DHTs) that are obtained express the in-between 
structure factors in terms of standard ones. When the 
casual Fourier transform condition is satisfied, a DHT 
applied to an intensity function provides twofold 
intensity oversampling in the reciprocal space. 

1. Introduction 

It has long been recognized that, if the magnitudes of 
the Fourier transform of a crystal unit cell could be 
observed continuously in reciprocal space (i.e. not only 
at the discrete Bragg locations), then the solution to the 
phase problem would be greatly facilitated (Sayre, 
1952; Buerger, 1960; Sayre, 1991). This situation is, in 
fact, met in optics, when the whole Fourier transform 
pattern is obtained. The literature on image recovery in 
two dimensions is rich with the contributions of many 
authors on this topic (Stark, 1987; Bates & Mnyama, 
1986, and references therein). Indeed, any normally 
two-dimensional image having a finite envelope can be 
uniquely reconstructed (Hayes, 1982; Bates, 1982). In 
fact, the whole Fourier transform pattern is not needed. 
Only magnitudes at in-between (having half-spacing) 
and normal sampling points are important. Magnitudes 
at any other point can then be calculated by means of 
Shannon's sampling theorem (Shannon, 1949; Jerri, 
1977). 

In its application to crystallography, Sayre (1952) 
pointed out that knowledge of the intensity at half- 
integral Miller indices is equivalent to having the signs 
of structure factors in the case of a centrosymmetric 
crystal structure. A few years earlier, Boyes-Watson, 
Davidson & Perutz (1947) reported the determination of 
the signs of centrosymmetric zone structure factors by 
observation of intensity at non-integral Miller indices in 
the process of haemoglobin shrinkage with the variation 
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of water content in the crystal. Later, Millane (1986, 
1990) and Kim & Hayes (1991) directly transferred 
optical image reconstruction techniques to the field of 
crystallography. 

The importance of in-between magnitudes in general 
image-reconstruction theory stimulated this work to 
solve the phase problem in crystallography. Recently, 
discrete Hilbert transforms (DHTs) have been derived 
for the crystallographic structure factor (SF) in the 
one-dimensional case (Mishnev, 1993). It was shown 
that DHTs are capable of expressing the SF at 
in-between points (i.e. having half-integral Miller 
indices) in terms of standard ones. In the present 
paper, DHTs are generalized to three dimensions (3D) 
and applied to both the SF and intensity. 

DHTs obtained for SFs allow in-between structure 
factors F(h/2, k/2, 1/2) to be calculated using the 
normal F(h,k, l) .  Trial phase estimates normally 
available from direct methods (DM) for smaller 
problems (Woolfson, 1987) and isomorphous replace- 
ment or anomalous-dispersion methods for macromole- 
cules (Blundell & Johnson, 1978) can be used to 
calculate in-between intensities IF(h/2, k/2, 1/21 z. A 
new formula is derived here for the convenient 
computation of the autocorrelation function (i.e. the 
Patterson for a single unit cell) from in-between and 
normal intensities. Compared with the normal 
Patterson, the autocorrelation function (ACF) should 
be free of the peak superposition inherent to the 
Patterson and thus more easily interpretable. 
Properties of the ACF and its relation to the Patterson 
function give rise to new criteria for the quality of the 
phase set. Introduction of the ACF into the phasing 
process enables one to employ its physical properties 
(non-negativity, boundaries in space and magnitude) 
and thus to construct iterative ACF modification 
algorithms. Possibly, deconvolution of the ACF rather 
than the Patterson (Harrison, 1990) might give better 
results as the ACF is dependent on phases whereas the 
Patterson is not. Furthermore, DHT's applied to the 
intensity function in three-dimensions and the formula 
for in-between intensities in terms of normal ones are 
obtained. These formulae hold for atomic distributions, 
having ACF projections concentrated mainly in the I 
and III quadrants of the plane, thus producing crystal- 
lographic oversampling in reciprocal space. 

Acta Crystallographica Section A 
ISSN 0108-7673 © 1996 



630 DISCRETE HILBERT TRANSFORMS 

2. 3D sampling theorems 

The sampling theorems for the crystallographic SF and 
intensity are defined as follows 

a b e  

F(s) = f f f p(r) exp(2rrirs) dv (1) 
0 0 0  

a b c 

l ( s ) =  f f f A(u)exp(27rius)du, (2) 
- a  - b  - c  

where s is a continuous 3D variable in reciprocal space 
and A(u) is the ACF for a single unit cell. From (1) and 
(2), it can be seen that the SF and intensity spectra are 
limited to the unit cell and twice the unit cell, 
respectively. 

The sampling theorem (Shannon, 1949; Jerri, 1977) 
states that a band-limited function can be specified 
exactly at any point by its sampled values, taken at 
regular intervals, which do not exceed Nyquist spacing. 
Inspection of (1) and (2) shows that both F(s) and I(s) 
can be considered as band-limited functions, whose 
Fourier transforms vanish outside the unit cell. The 
Nyquist spacing, or maximal-allowed interval between 
samples, in our case is 1/2 for all three variables. Thus, 
the sampling theorem for F(s) and l(s) has one and the 
same form, and for the SF it is given by Brillouin (1962) 
and Petersen & Middleton (1962): 

F(sl, s z, s3) = ~ F(h/2, k/2, l/2) 
h,k,l 

× sinc(2sl - h) sinc(2s2 - k) sinc(2s3 - l )  

(3a) 

with the notation sinc(x) = sin(x)/x. The summation is 
taken over all positive and negative integers h, k, 1. 

By setting s 3 to integral-valued L, we obtain the 
corresponding sampling theorem for reciprocal-space 
sections 

F ( s  I , $ 2 ,  L) = ~ F(h/2, k/2, L) 
h.k 

x sinc(2s I - h) sinc(2s: - k). (3b) 

Likewise, a linear sampling theorem can be obtained by 
setting s 2 and s 3 to integral K and L, respectively: 

F(s,, K, L) = ~ F(h/2, K, L) sinc(2s I - h). (3c) 
h 

From (3a)-(3c), one can see that interpolation of the 
SF at an arbitrary point in the reciprocal space requires 
the knowledge of both in-between and normal samples. 

3. 3D discrete Hilbert transforms for the structure 
factor 

It is well known that if a complex function of a real 
variable f (x)  has a Fourier transform F(y) that vanishes 
for negative argument (causal Fourier transform), f (x)  

satisfies the Hilbert transform (Toll, 1956; Wu & 
Ohmura, 1962) 

oo 

f ( x ) =  (1/rrj)e f f ( y ) / ( y - x ) d y ,  
--00 

where P denotes the Cauchy principal value and 
j = ( - 1 )  1/2. By definition, the SF satisfies the causal 
Fourier transform condition and one can apply Hilbert 
transforms to the sampling expansion (3a). From 
Papoulis (1968) and Kramer (1973), the Hilbert trans- 
form of the sinc function 

f (s) -- [sin rr(2s - h)]/rr(2s - h) 

g(s) -- - [1 - cos rr(2s - h)]/rr(2s - h) 

and, after application of the transformation to (3a)-(3c) 
for each variable, we obtain the following discrete 
Hilbert transform expressions: 

F(s~, K, L) = ( -  1/j) ~ F(h/2, K, L) 
h 

× [1 - cos rr(2s, - h)]/[zr(2s, - h)], (4a) 

{further with the notation cosc(x) = [1 -cos(x) ] /x}  

V(s I , s 2, L) = - ~ V(h/2, k/2, L) 
h.k 

x cosc(2s I - h) cosc(2s z - k) (4b) 

and 

F(sl,sz, s3) = ( l / j )  ~ F(h/2, k/2,1/2) 
h.k.l 

× cosc(2s I - h) cosc(2s z - k) 

× cosc(2s 3 - 1). (4c) 

Now, by setting s I = h'/2 with h' integer in (4a), one 
obtains 

F(h'/2, K, L) = ( -  1 ~j) ~ ' F(h/2, K, L) 
h 

x [1 - (-- 1)h'-hl/[:r(h' -- h)], (5a) 

where the prime on the summation sign indicates that 
terms with h' - h are omitted. In the same way, using 
(4b)-(4c), the following discrete Hilbert transforms for 
two and three variables can be derived: 

F(h'/2, k'/2, L) = - ~ ' F ( h / 2 ,  k/2, L) 
h.k 

× [1 - ( -1)h ' -h] / [z r (h  ' -  h)] 

x [1 - ( -  1)k'-k]/[rr(k' -- k)] (5b) 

and 
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Table 1. Test of the DHT (equation 5c) for  the cyclo- 
alanine structure 

F(s) = A(s) + iB(s). 

A(s) A(s) B(s) B(s) 
Sl S2 S 3 True From (5c) True From (5c) 

0.5 0.5 0.5 -18 .10  -17 .28  -11 .5  -13 .35 
0.5 1.5 4.5 -2 .87  -3 .05  -3 .02  -2 .98  
1.5 4.5 1.5 -14.23 -14 .57  7.98 8.05 
1.5 6.5 5.5 3.56 3.40 -4 .65  --4.43 
2.5 1.5 4.5 3.37 3.42 0.70 0.70 
2.5 6.5 4.5 2.01 2.16 0.17 0.23 
3.5 0.5 2.5 -6 .58  --6.27 -2 .29  - 1.98 
3.5 2.5 4.5 5.18 4.98 -6 .37  -6 .36  
4.5 1.5 3.5 -12 .02 -11 .57  4.21 4.14 
4.5 6.5 4.5 -2 .72  -3 .16  -0 .58  -0 .55  
5.5 1.5 5.5 -1 .39  -1 .40  4.83 5.48 
5.5 5.5 5.5 -4 .58  -5 .09  -3 .62  -3 .79  
6.5 2.5 4.5 4.88 4.81 -4 .22  -4.01 
6.5 5.5 6.5 4.53 4.77 -0 .43  -0 .38  

F(h'/2, k'/2,1'/2) = ( l / j )  ~ ' F(h/2, k/2, l/2) 
h.k.l 

× [1 - ( - - 1 ) h ' - h ] / [ J r ( h '  - h ) ]  

× [1 - (--1)z-k]/[rr(k ' -  k)] 

× [1 -- (--1)r-t]/[yr(t ' -  l)]. (5c) 

Suppose that h', k', l' on the left-hand side of (5c) are 
odd, then, on the right-hand side, terms with odd h, k, l 
will cancel and only terms with even h, k, l will remain. 
Thus, (5c) gives the value of the in-between SF 
F ( H + I / 2 ,  K + I / 2 ,  L + I / 2 )  in terms of normal 
ones. In turn, (5a) and (5b) express F(H + 1/2, K, L) 
and F(H + 1/2, K + 1/2, L), respectively, in terms of 
SFs, having integral Miller indices. It should be noted 
that (5a) and (5c) are discrete Hilbert transforms in a 
classical sense as they link the real part of the SF with 
the imaginary parts of the other SFs and vice versa. 
However, (5b) expresses the real part of the SF through 
the real parts of the others. The same is true for the 
imaginary parts in (5b). 

To verify the validity of the formulae obtained, the 
triclinic crystal structure of cyclo-L-alanyl-L-alanine 
(Sletten, 1970), having cell parameters a = 5.1552, 
b = 8.0596, c =4.6698,  a = 103.155, fl = 103.680, 
y = 97.587 °, space group P1, was used. SFs were 
calculated using real atomic form factors for ten non-H 
atoms, all treated as C atoms. Table 1 shows the real 
and imaginary parts of selected in-between SFs 
calculated from the atomic coordinates and by means 
of (5c). 

4. Autocorrelation function 

Having the estimates of in-between SFs, and hence 
intensities, we can incorporate them into the phasing 
process by means of the ACF. Unlike the normal 
Patterson, the ACF is not periodic and dies when 

interatomic vectors exceed maximal distances between 
atoms in a single unit cell. 

As follows from the intensity definition (2), the ACF 
is the inverse Fourier transform of the intensity function 

OG 

A(u) = f .f f l(s) exp(-2rrius) ds. (6) 
--OO 

By substituting the sampling expansion for l(s), 

l(s 1, s 2, s3) = ~ l(h/2, k/2, l/2) sinc(2s I - h) 
h.k,l 

x sinc(2s 2 - k) sinc(2s 3 - l) (7) 

into (6) and performing the integration over the sinc 
functions, we obtain 

A(u, v, w) = (1/8V) ~ l(h/2, k/2, l/2) 
h.k.l 

x cos :r(hu + kv + lw). (8) 

Expression (8) gives a convenient way of calculating the 
ACF instead of by numerical integration by means of 
(6). Formula (8) looks similar to the Patterson function 
although (8) also contains in-between intensities. The 
fundamental difference between the ACF and the 
Patterson is that the former is dependent on phases 
whereas the Patterson is not. This feature of the ACF 
makes it useful in treating the phase problem. 

Let us separate the ACF into phase-independent and 
phase-dependent parts as follows: 

A(u, v, w) = (1/8)P(u, v, w) + D(u, v, w), (9) 

where P(u, v, w) is the conventional Patterson function 
and 

O(u, v, w) = (1/8V) ~ l(h/2, k/2, 1/2) 

× cos rc(hu + kv + lw) (1 O) 

is dependent on the phases of the normal SFs. The 
function D(u) assumes either positive or negative 
values. For correct phases, it suppresses peaks arising 
from interactions between atoms in the central and 
surrounding unit cells and improves the first term in (9) 
for interactions within the cell. Neither A(u) nor D(u) 
has a direct correlation with P(u). However, in so far as 
the role of D(u) is to compensate positive Patterson 
peaks, there would be some certain correlation between 
P(u) and ID(u)l. Moreover, a good phase set should 
produce an ACF map with a minimal amount of 
negativity and also with small ACF values at grid 
points where P(u) is small. To test these considerations 
as potential figures of merit for the goodness of phase 
sets, the cycloalanine structure was used again. Table 2 
shows the correlation coefficient (CC) between P(u) and 
ID(u)l, the amount (SN) of negativity of A(u) and SD, 
the sum of the A(u) values at the points where the 
Patterson is close to zero, for phase sets with different 
absolute mean phase errors (Iza~01). It can be seen that 
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Table 2. Figures of merit (FOMs) for a good phase set 
based on the ACF and the D(u) function 

CC is the correlation coefficient between P(u) and ID(u)l, SN is the 
negative density of A(u) and SD is the density in the zero-valued 
Patterson regions. 

(IA~ol) (o) CC SN SD 
0.0 0.731 -206.9 297.8 

40 0.604 -8380.7 7735.4 
60 0.516 -10523.4 11707.0 
90 0.507 - 10267.8 10112.3 

all three figures show a fairly good indication of the 
correct phase set. 

5. 3D discrete Hilbert  transforms for intensity 

Experience in application of the DHT to SFs will now 
be useful in deriving the desired expression for 
intensity. Although mathematically the Hilbert 
transform can be obtained for any suitable function, 
intensity is a real function and its imaginary part has no 
physical meaning. Thus, the only reasonable form of the 
DHT for intensity is that equivalent to (5b). For 
simplicity of analysis, we start with the expression for 
the two-dimensional case. Then the DHT for intensity 
reads 

I(h'/2, k'/2) = - y~' l (h/2,  k/2) 
h,k 

x [1 -- (-- 1)h'-hl/[rt(h' -- h)] 

x [1 - ( -1)k ' -k] /[rr(k ' -k)] ,  (11) 

which can be rewritten in a clearer form: 

I (h '+ 1/2, k' + 1/2) 

= - ( 1 / J r  2) y ~ ' I ( h , k ) [ ( h ' - h  + 1 / 2 ) ( k ' -  k + 1/2)] -1, 
h,k 

(12) 

where h, h', k and k' all have integral values. It 
should be noted that the same expression can be 
obtained by direct discretization of 2D integral 
Hilbert transforms, as derived by Nieto-Vesperinas 
(1980). Now we have to answer the question how 
general is this formal expression, in so far as the 
2D intensity function must satisfy the causal Fourier 
transform condition? According to the latter, its 
Fourier transform must vanish for negative 
arguments. The definition for 2D intensity is 

a b 

l(s 1, sz) = f f A(u, v)exp[2rri(us I + vsz)]dudv. (13) 
- -a  - b  

The ACF A(u, v) normally has spread to both positive 
and negative arguments (u, v). Using the centrosym- 
metric property of the ACF, we can rearrange the 
integral (13) as follows: 

Table 3. Test of DHT (equation 15) for intensity 

l ( s  I , s 2, L )  l ( s  1 , s2, L )  

s I s 2 L True From (15) 

- 0 . 5  5.5 0 127.6 134.6 
5.5 2.5 0 47.8 46.5 

- 3 . 5  4.5 I 44.2 45.7 
6.5 - 6 . 5  1 82.6 85.2 

- 5 . 5  - 4 . 5  2 126.7 131.2 
0.5 0.5 2 877.3 881.5 

- 6 . 5  0.5 3 17.7 13.6 
2.5 5.5 3 89.6 93.0 

- 5 . 5  - 4 . 5  4 53.3 51.1 
1.5 6.5 4 54.9 58.7 

- 4 . 5  1.5 5 175.2 170.5 
2.5 5.5 5 36.0 33.5 
4.5 6.5 6 198.7 197.2 
6.5 - 3 . 5  6 110.3 106.0 

a b  

l(s I , s2) = 2 f f A(u, v) cos[27ri(us I + vs2) ] du dv 
O 0  

a b 

+ 2 f f A(u, - v )  cos[2zri(us I - vs2) ] du dv. 
0 0 

(14) 

From (14), it can be seen that for a general atomic 
distribution it is impossible to satisfy the causal Fourier 
transform condition. However, when the atomic 
arrangement is such that its ACF is localized in the I 
and HI quadrants of the plane, the second integral in 
(14) vanishes and the DHT for intensity must hold. 
Another alternative when the causal Fourier transform 
condition for intensity can be satisfied is the case when 
the electron density p(x, y) can be factorized in the form 
p(x)p(y). By introducing the third Miller index as a 
parameter in (12), the 3D DHT for intensity can be 
obtained: 

l(h' + 1/2, k' + 1/2, L) 

= - (1 / z f l ) y~ ' l ( h , k ,L )  
h,k 

x [ ( h ' - h  + 1 / 2 ) ( k ' -  k + 1/2)] -1. (15) 

To verify the validity of (15), we used a 3D model 
structure with six C atoms having coordinates 
(x,y, z) = (0.1,0.1,0.4);  (0.2, 0.3, 0.3); (0.4, 0.4, 0.2); 
(0.5, 0.6, 0.7); (0.7, 0.7, 0.6); (0.8, 0.9, 0.9). The 
atoms have been assumed to be Gaussian. The re- 
construction has been carried out with the origin peak 
removed from A(u, v, w). After the reconstruction, the 
subtracted intensity was restored. The results of the 
recovery of intensity at half-integral Miller indices for 
this model structure are given in Table 3, which shows 
the in-between intensities calculated directly and by the 
use of DHT (15) for some selected reflections. 



A. F. MISHNEV 633 

6. Discussion 

So far, this research is mainly theoretical. The formulae 
have yet to be checked with real diffraction data. 

Two properties of a general type, causality and band- 
limitedness, applied to the structure factor, allowed the 
intensities to be brought into the phasing process by 
means of the autocorrelation function. When the 
causality condition is satisfied for the intensity function, 
the DHT led to a twofold intensity oversampling in 
reciprocal space. The causality in our case was 
expressed in projection. This condition is realistic 
only for some linear chain molecules. 

Model numerical calculations on the ACF suggest 
that new figures of merit (FOMs) for judging the quality 
of the phase set can be constructed. Reliable FOMs, 
able to recognize the best set in multisolution direct 
methods when applied to large structures, are a great 
necessity. Likewise in protein crystallography, FOMs 
to characterize the quality of electron-density maps, in 
the process of phase extension and refinement, need to 
be fast and easy to calculate. Two efficient but rather 
time-consuming FOMs have been developed recently 
(Gilmore, Henderson & Bricogne, 1991; Mishnev & 
Woolfson, 1994). The first one is based on the 
evaluation of the log-likelihood gain, based upon 
entropy-maximization procedures. The second FOM 
exploits the expected characteristics of an electron- 
density map for proteins. The FOMs proposed in this 
paper are built on a different principle, being related to 
the Patterson function. 

There are also other ways of fitting the ACF to the 
Patterson function in zero-valued regions or by applying 
a minimum-negativity constraint to the ACF. Least- 
square procedures for phase refinement could be 
designed on that basis. 

The author is grateful to the Royal Society for partial 
support of this work. 
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